

Conveyance Infrastructure

- Over 200 Miles to Gulf intake/outfall each way
- Assume largest practical pipe is 12.5-ft Dia.
- Canals must follow contours each way and require check structures
- Use pump station(s) as necessary for alignment

Gulf of California Import/Export Issues

- Multiple nation project
 - **Pumping and Conveyance facilities in Mexico O&M?**
 - What does Mexico gain?
- Species exchange
- Water quality exchange
- Biosphere
- Huge volumes needed to reach salinity and elevation targets
- Alignment Impacts
- ◆ Low Sea elevation if export only

Phase 1

- Emphasis: maintain inflows to the Sea to the extent possible as long has the Sea has habitat value (say, 150,000 ppm)
- Move to Phase 2 as soon as science concludes Sea is of marginal habitat value compared to alternative
- Planning and monitoring phase
- Potentially bypass Phase 1 completely

Phase 2

- Emphasis: Construct conveyance facilities for proposed exposed area habitat use, pilot projects, and/or AQM
- Sea may still have habitat value – prolong this as desired
- Build pilot projects into system
- Continue monitoring phase

Phase 3

- Emphasis: AQM is the only activity reducing inflow to the Sea this maximizes the time that Sea remains valuable habitat.
- Move to Phase 4 when some inflows can be used for other purposes within the exposed playa
- Pilot project and monitoring phase

Phase 4

- Emphasis: Construct and operate saltwater marsh (and other habitat desirable) and/or agricultural areas in the south & north once Sea becomes too salty to be of habitat value and inflows could then be better used for other purposes.
- Could accommodate 55,000 acres saltwater marsh (36,000 acres wet) or up to 36,000 acres farmland plus other habitat features

Phase 5

- becomes stable at lower elevation and inflow, reclaim a portion of the sea near marine conditions
- Barrier would be much smaller (and porous)
- Construct displacement dikes to reclaim land if desired too

Evolving Sea Issues

- Does not support a stable Sea elevation near existing levels anywhere
- ◆ Continued degradation of all Sea habitat
 - similar to brine area in barrier alternatives
- Implementation of future phases occurs over many years
 - time dependant on inflow changes and water quality degradation
- Still requires construction of conveyance systems for habitat and AQM areas

Multiple Rings vs. Cascade Option

- DWR working with Imperial Group to understand Cascade concept details and criteria
- Multiple ring alternative adopting similar concepts as Cascade
 - All get a shoreline
- Standardizing features for comparison
 - Perimeters earthen/rock dikes vs. Geotubes
- Similar water quality and air quality management, as in other alternatives, as needed
- Evaluating as "barrier alternative"
- May reconfigure flows to avoid large fresh water bodies

Multiple Concentric Rings Issues

- Salinity in each ring area is different and should be controlled based on habitat needs
- Ring barriers subject to DSOD review (i.e. jurisdictional dam)
- AQM conveyance may be more difficult in this alternative
- Brine pool fluctuation and lower rings

Next Steps

- Work with Habitat Working Group to incorporate specific habitat features in each configuration
- Prepare Infrastructure report describing engineering project features